If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x^2)+12x-96=0
a = 3; b = 12; c = -96;
Δ = b2-4ac
Δ = 122-4·3·(-96)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-36}{2*3}=\frac{-48}{6} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+36}{2*3}=\frac{24}{6} =4 $
| 3x+2(7x-3)=7 | | 6x=‐14(10+x) | | (x-2)/3=5 | | -4(-7w+5)-8w=2(w-7)-8 | | 2x-15+7x+21=180 | | 7=7-e | | -9n-45=-81 | | 3-10j=-7j+3-3j | | x+5.5=12.7 | | m-5.3=12.02 | | 2p−2p+9p+3p−9p=15 | | (1)/(2)x+8=10 | | 4(2u-3)+u=15 | | -5(6-6n)-5=-245 | | (5x-7/5)=(7x+3/2) | | x^2+6x=118 | | 15x+82=56x+3 | | 3/5x-2/3=1/6+5/9x | | -1+u=-8+u | | 20x=4.9 | | 2.6+4.4x+4.4=12 | | 3(t+2)-t=10 | | 20x=4.89 | | h—1=3 | | -3x-8=18 | | 8n-(6n-7)=9 | | 7x+19+11x-89=60 | | 15.85+0.11(x+3)=16,61-0.13 | | 3(x–5)=-18 | | 17x-64=90 | | 8c-9/5=3 | | (4x+8)+(8x+4)=15x-9 |